Blades & Rotors

Arno van Wingerde
Knowledge Centre WMC-NL
Group Projects and Project Coordinators

- DAMPBLADE – CRES (GR) M€ 1.1
- KNOW-BLADE – RISØ (DK) M€ 1.0
- MEXICO – ECN (NL) M€ 1.5
- OPTIMAT BLADES – WMC (NL) M€ 2.4
- SIROCCO – ECN (NL) M€ 1.7
- STABCON – RISØ (DK) M€ 1.9
- COMHUB – UN. GIRONA (ES) M€ 0.8

Total EC contribution: M€ 10.4
(>1/3 of FP5 WIND budget)
Introduction

- The rotor is the most visible aspect of a wind turbine
 - Big
 - External
 - Moving
- Very noticeable in case of failure!
- First step in conversion from wind to electricity
 - External influences
Challenges

- **€/kWh:**
 - Beating the square-cube law:
 - The energy output $\sim D^2$ \Leftrightarrow The blade mass $\sim D^3$
 - Worse for gravity component

- **Public acceptance**
 - Decrease generated aerodynamic noise
 - **SIROCCO**
 - Increase aerodynamic efficiency
 - lower loads on blades, same energy yield
 - **MEXICO**
Challenges: continued

- Increasing average diameter
 - Less reserves: more detailed structural analysis necessary
 - **OPTIMAT BLADES**
 - Optimised rotor parts
 - Weight, corrosion, casting problems
 - **COMHUB**
 - Improved damping qualities
 - **DAMPBLADE**

- Increased risk of aeroelastic instabilities
 - Less reserves: more detailed aeroelastic analysis necessary
 - **KNOW-BLADE**
 - **MEXICO**
 - **STABCON**
 - Improve structural damping qualities
 - **DAMPBLADE**
Achievements, materials & structures

◆ Materials & Structures

- First full database on a material **OPTIMAT BLADES**
 - More Bi-axial material data, comparison between FE and digital imaging techniques
- Improved knowledge on damping 80% improvement damping capacity achieved **DAMPBLADE**
- Composite Hub designed and produced **CONHUB**
Achievements, Aeroelastic

- First Detached Eddy Simulation of a full wind turbine **KNOW-BLADE**
- Full 3D NS model
- Fully instrumented model in Wind tunnel **MEXICO**
- Aeroelastic stability limit tools **STABCON**
Achievements, result

- **Square-cube law: mitigated by improved designs**

![Blade Weight vs Diameter graph]

- $y \sim x^{3}$
- $y \sim x^{2.63}$
- $y \sim x^{2.42}$
Future R&D

◆ Unified material qualification procedure
 ➔ Fatigue progressive damage model
 ● Failure prediction under static/fatigue loads
◆ Probabilistic approach to blade design
◆ Improved aerodynamic understanding
 ➔ Higher energy yield, lower static/fatigue loads
◆ Integrated design tools
 ➔ Overall optimisation possible
 ➔ Include LCA (Life Cycle Analysis)
◆ Small turbines
 ➔ R.I.P. (-off)
 ● Hybrid systems possible for remote locations
Future R&D, continued

◆ Extended aeroelastic model
 - In between full N.S. and blade moment
 - For instance “2.5 D” instead of full 3D
 - Unsteady Aerodynamics on rotating blades, incl. massively separated flows
 - relation between wake and rotor-inflow
 - yawed flow

◆ Norms and standards
 - Unified material qualification procedure
 - Aerodynamic/Aeroelastic: still limited to consultants.
 - Blade loads: some 20% difference
Wind Energy R&D support from the European Commission

EWEC 2004, London 23rd November 2004