OPTIMAT BLADES
Progress until July 2004

Arno van Wingerde
Knowledge Centre WMC
The Netherlands
Problems encountered: Overview

- Test Geometry Determination
- Fabrication of test specimens
- Move WMC
- Low fatigue frequencies
- Extra tests carried out
Test Geometry Determination

- General results comparable to ISO specimens
- Allow measuring techniques
 - Strain gauges
 - Clip gauges
 - Acoustic Emission
 - Ultrasonic
 - Infrared imaging
 - Temperature
- No buckling
- Not too thick
 - Maximum load: 100 kN
 - Load introduction through tabs
- Acceptable and/or consistent failure mode
- Bi-axial specimens
 - Cruciform
 - Tubes
- Delay in manufacturing
Low fatigue frequencies

- Originally, a frequency of 5…10 Hz was expected
 - Based on experience of all testing labs
 - High frequencies => significant heating
 - Can reduce fatigue properties
 - First results showed wide scatter
 - Extra meeting necessary
 - Added plan of action
 - Many extra tests done
 - First frequency per load established by preliminary tests
 - Round robin tests redone
 - Many results discarded
 - Longer test times
Tests carried out vs. planned

- Tests done:
 - Static
 - CA
 - VA
 - RST
 - Total Fatigue

- Cycles done:
 - Static
 - CA
 - VA
 - RST
 - Total Fatigue

- Time done:
 - Static
 - CA
 - VA
 - RST
 - Total Fatigue
NB: numbers are rough “guesstimates”

Total delay is considerably smaller due to:

- Overlap in delays
- Extra effort by the partners
 - Dedicating more test machines and effort

Overall delay is about 12 months
Material testing: lessons learned

● Unexpected material behaviour and testing effects encountered
 ● Would never have been revealed in a number of smaller, unrelated projects
 ● Plate-to-plate variation, specimen variation within a plate varies by type test (R-value etc.)
 ● Influence of test methods
 ● Highly sensitive for some parameters
 ● Gives deeper insight in the material behaviour

● Lab-to-lab variation appears to be small

● Basis for future procedures, standards
 ● Much knowledge gained on the value and uncertainties in future material specification by testing
 ● New test standards (e.g. ISO)
 ● Test specimen for fatigue and residual strength
 ● Test frequencies and procedures
 ● Possible spin-off to standard bodies outside of wind energy
Deliverables

- **OPTIDAT**: extensive material database
 - Major bonus for future research projects
 - Largest European wind turbine material database (larger than FACT)

- **OPTIMAT website**: with all documents available on-line
 - Efficient documentation management

- Already many scientific publications

- Enhanced and unique knowledge about the material behaviour and testing effects

- Standard Optimat test specimen geometry

- Knowledge for (making standard for) material characterisation
Consortium Strengths

- The consortium includes unique expertise
 - Proven capabilities to handle a huge amount of test results by developing a unique database: OPTIDAT
 - Fully automatic document database to handle the enormous flow of information: http://www.ecn.nl/optimat

- Strong consortium that is intensifying its cooperation during the project and acts as a centre of excellence
 - Partners all want to continue and are prepared to cover the extra efforts and costs themselves
 - Good cooperation between partners; even with all the technical problems encountered and overcome

- Given the problems encountered:

 This is probably the only consortium that can resolve the current and future questions regarding rotor blade material behaviour and characterisation
Conclusions

- After the delays: the consortium now at full speed
- Major new knowledge has been generated by the consortium
 - Also extending beyond the proposal in the field of material testing
- The consortium needs to go ahead, because it is probably the only chance to resolve the issues at hand
 - No other conceivable consortium would have this background in material testing for wind turbines
 - Setting up another project of this magnitude on material testing for wind turbines by the EU would be next to impossible
- After the project, the consortium with its unique expertise should continue to extend the knowledge of material behaviour for the design of next generation rotor blades
 - Also applicable outside of wind energy